Methodologies and approaches for chemical risk assessment in the area of food

George Kass Scientific Committee and Emerging Risks Unit

www.efsa.europa.eu

OUTLINE

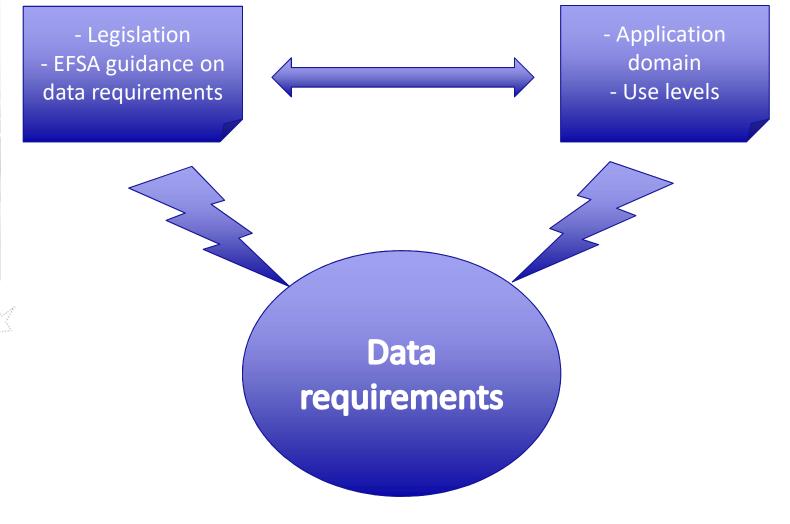
1.Data for chemical RA: what do we need?

2.Data: new types, new sources, new approaches

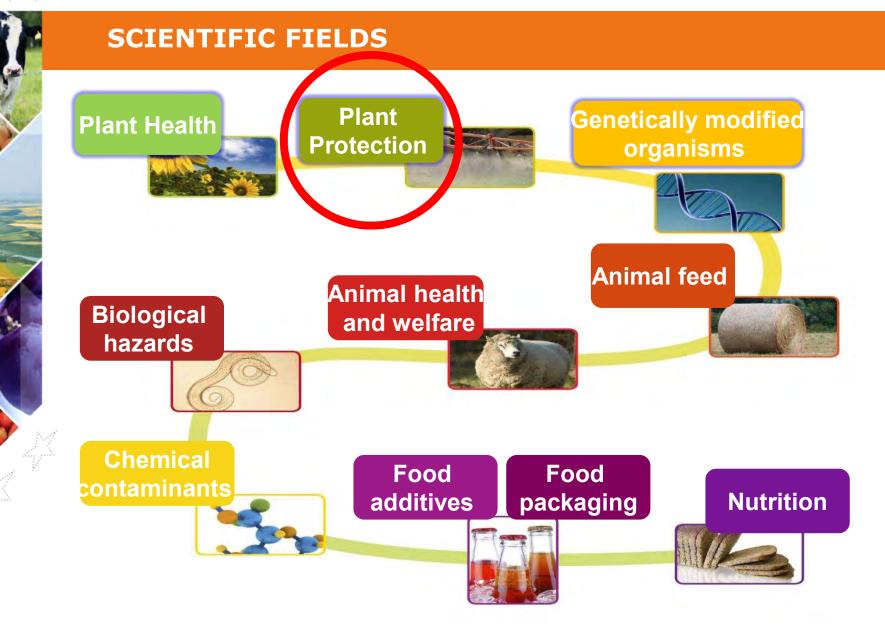
3.Evidence, significance and uncertainties

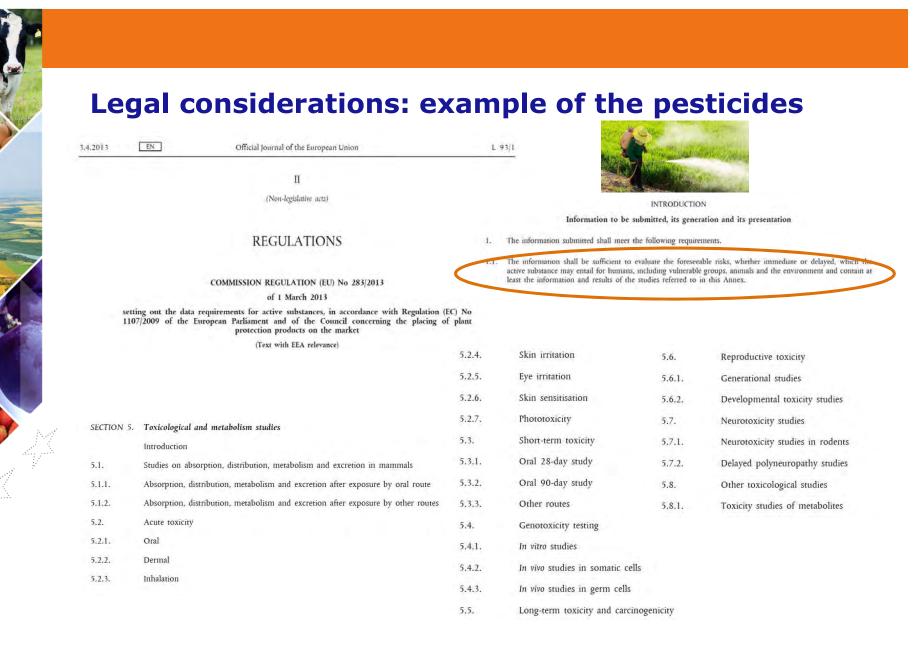
OUTLINE

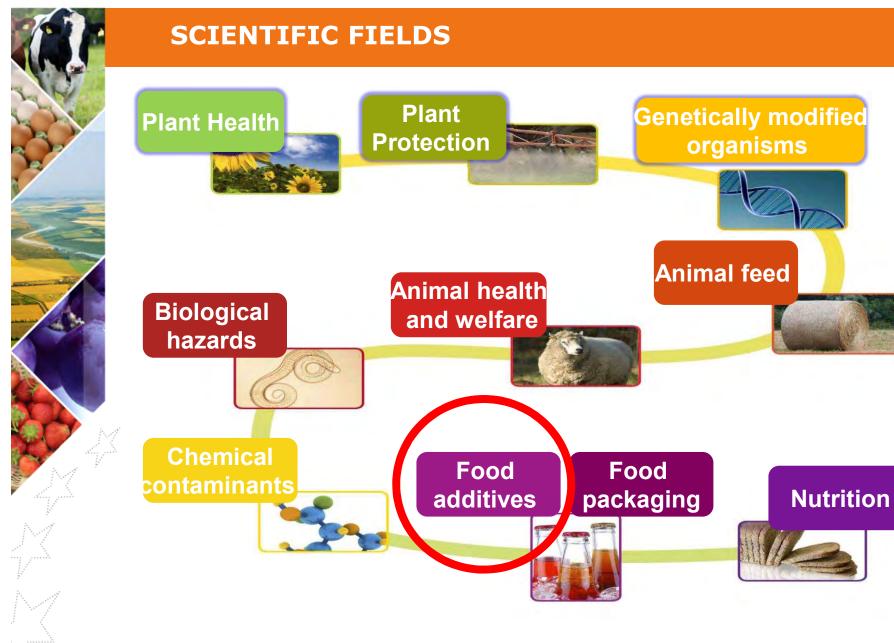
1.Data for chemical RA: what do we need?


2.Data: new types, new sources, new approaches

3.Evidence, significance and uncertainties




DATA: WHAT DO WE NEED?



FOOD ADDITIVES: EFSA GUIDANCE

L 354/16 EN

Official Journal of the European Union

31.12.2008

REGULATION (EC) No 1333/2008 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 16 December 2008

on food additives

(Text with EEA relevance)

(7) Food additives should be approved and used only if they fulfil the criteria laid down in this Regulation. Food additives must be safe when used, there must be a technological need for their use, and their use must not mislead the consumer and must be of benefit to the consumer. Mis-

EFSA Journal 2012;10(7):2760

SCIENTIFIC OPINION

Guidance for submission for food additive evaluations¹

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS)^{2,3}

European Food Safety Authority (EFSA), Parma, Italy

FOOD ADDITIVES: EFSA GUIDANCE FOR STUDY REQUIREMENTS

<u>TIER 1</u>*

- Absorption
- Genotoxicity
- in vitro testing
- genotoxic impurities

Extended 90-day tox study

- repro endpoints
- endocrine activity
- other (immune, neuro)

Triggers for Tier 2

- Absorption/Systemic exposure
- ➢ GI toxicity
- Subchronic toxicity
- (+ve) in vitro genetox

* Minimal dataset - Applicable to all compounds

TIER 2

- ADME
- Genotoxicity

 in vivo testing
- Chronic/Carc
 - stand-alone or combined

Reproductive

- **1. EOGRT study (rat various endpoints)**
 - repro & developmental
 - immunotoxicity, neurotoxicity
- 2. Pre-natal developmental tox (rabbit)

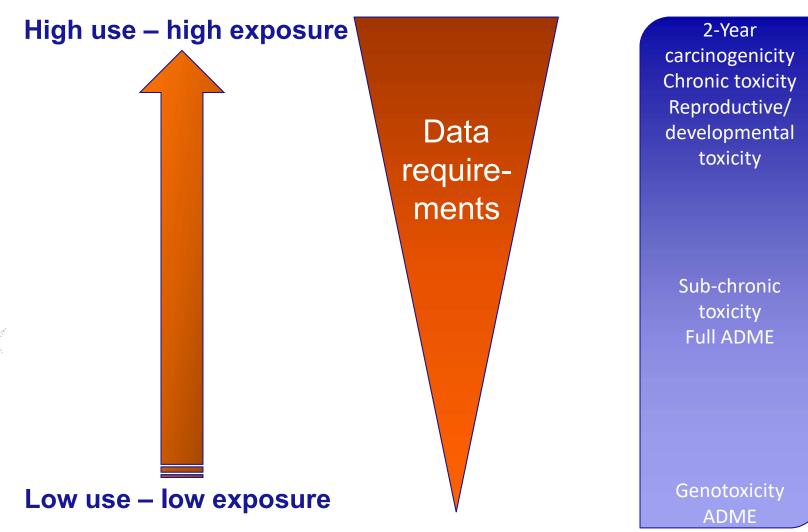
Triggers for Tier 3

- Bioaccumulation/slow excretion
- > (+ve) in vivo genetox
- Chronic/carc
- EOGRTS toxicity
- > Developmental toxicity (rabbit)

Approach to Tier 3 studies

- Consideration of all available data
 - Case-by-case approach
 - Equivocal findings

TIER 3**


- Toxicokinetics - PBK modelling, volunteer studies
- Carcinogenicity
 2nd species (?)
- Repro

- F2 generation
- developmental immuno- & neurotox
- Specialised studies
 - immunotox, neurotox, endocrine
 - ** Additional studies Only if triggered

DATA: WHAT DO WE NEED?

DATA: WHAT DO WE NEED?

Example: Food contact materials

The higher the 'migration' into food, the greater the amount of data is required

Migration (mg/kg food)	< 0.05	0.05 - 5	5-60
Genotoxicity	+	+	+
90-day study		+	+
Data on accumulation		+	+
ADME			+
Reproduction study			+
Developmental studies			+
Long term study			+

FULL SET OF TOXICITY DATA

Means 1,500-3,000 laboratory animals (cost €30-40 million)

Ethical considerations

But as risk assessors we need

> more data

• more endpoints

better data

- more robust data
- more data points
- less uncertainty
- to allow better predictions

CHALLENGES IN FOOD SAFETY RISK ASSESSMENT

Not all chemicals can be tested!

- Single chemicals: known impurities and contaminants
- Complex and undefined chemicals: what to test?
- Unknown chemicals: e.g. NIAS in food contact materials.
- Metabolites of chemicals: e.g. pesticide metabolites.
- Mixtures of chemicals: which mixture to test?

`Unorthodox chemicals'

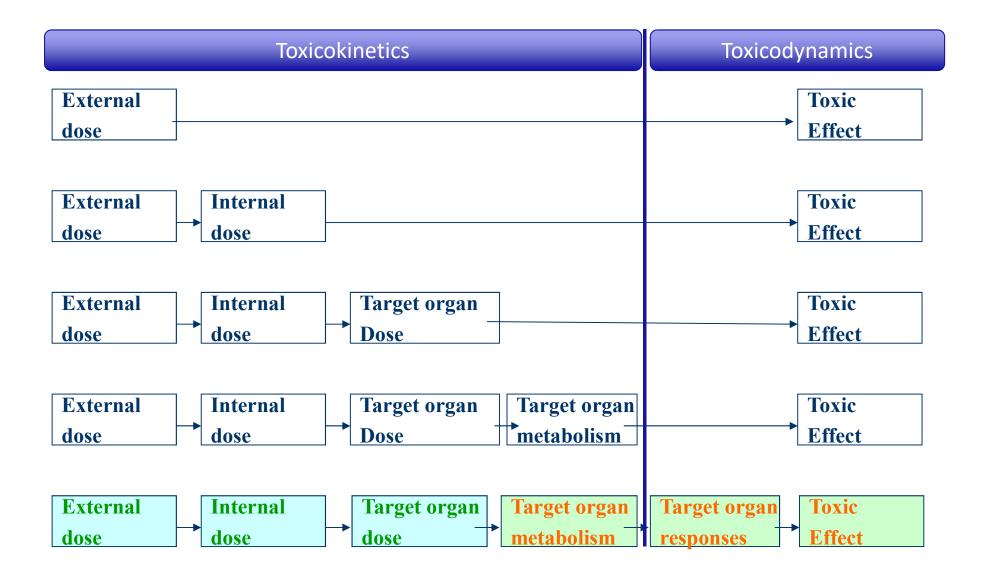
Endocrine active substances

OUTLINE

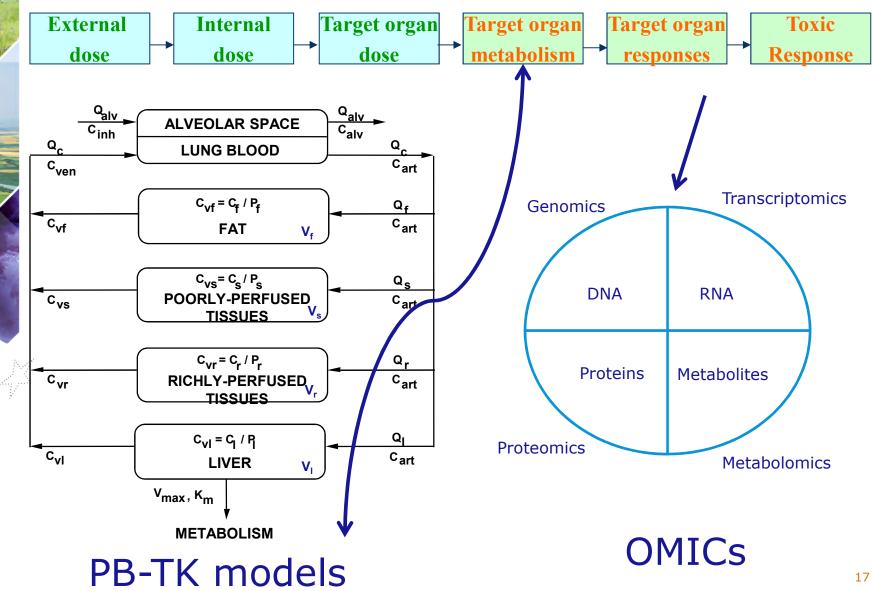
1.Data for chemical RA: what do we need?

2.Data: new types, new sources, new approaches

3.Evidence, significance and uncertainties



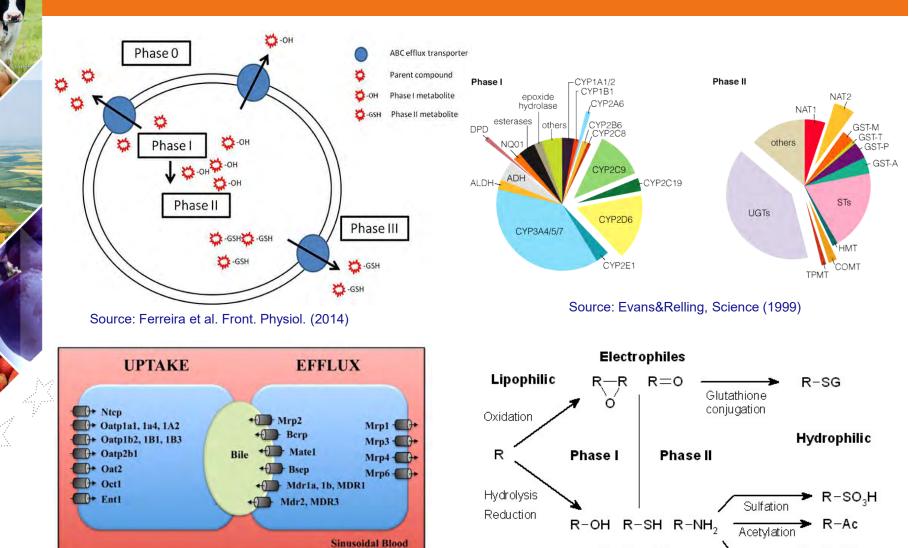
EFSA's initiatives in


Methodologies and approaches for chemical risk assessment in the area of food

Improved understanding from toxicokinetic and toxicodynamic processes

BIOLOGICALLY BASED MODELS AND OMICS

OPEN SOURCE TK MODELS: DATA AND MODELS

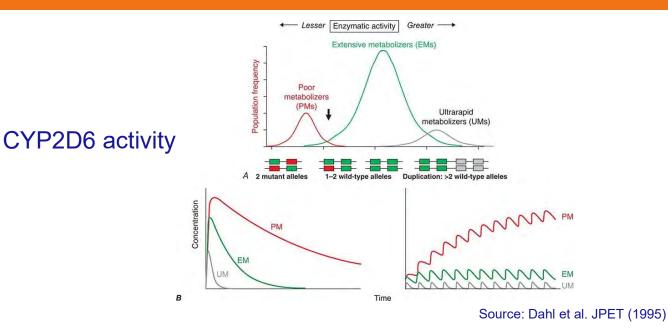

- Collection data physiological and biological parameters: calibration of TK tools
 - Body weight, variability enzymes expression gut/liver etc.
 - Human Variability metabolism and excretion (CYP2C9, CYP2C19, UGTs, Renal excretion) using Pharmaceutical DB
 - TK tools from one compartment to multi compartment/PB-PK e.g. blood/liver/gut/kidney
 - Case studies 10 compounds relevant to food and feed safety combining TK and TD: regulated, contaminants
- ✓ In the future: Open TK tools in R
- In parallel, TK tools for veterinary species (cow, pig, cat, chicken) and ERA (zebrafish, trout, earth worm)

Human variability in toxicokinetics

MAJOR METABOLIC/EXCRETION ROUTES IN HUMANS

Source: Moscovitz&Aleksunes, Int. J. Mol. Sci. (2013)

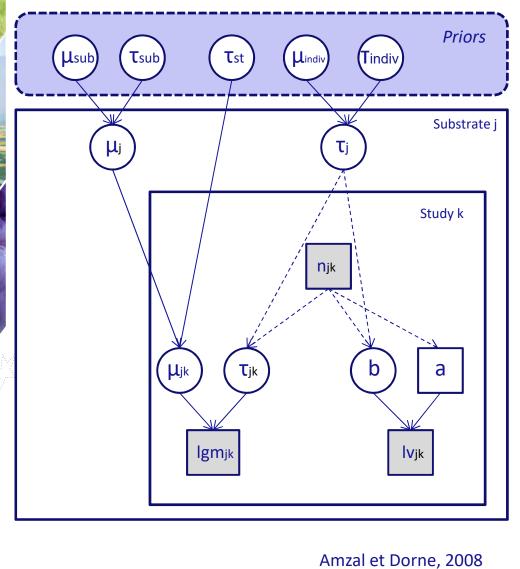
By TimVickers - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4549628²⁰


Glucuronidation

R-GI

Nucleophiles

HUMAN VARIABILITY IN TK: ongoing work in food safety



From pharmaceutical databases and compounds relevant to food safety,

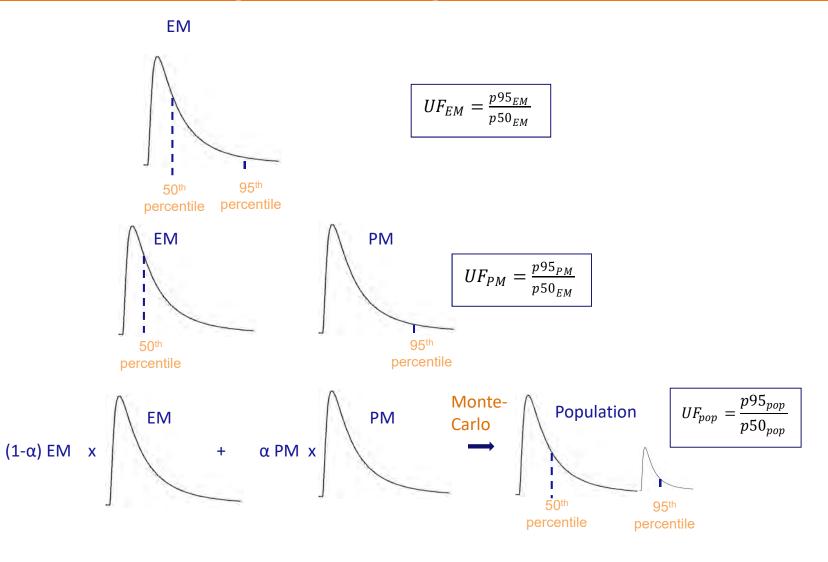
- ✓ Identify Phase 0, I, II, III isoforms *in vitro*, excretion data etc.
- ✓ PK parameters of acute and chronic exposure: Meta-analysis
- Human variability distributions isoform specific for different subgroups of the population

BAYESIAN META-ANALYSIS OF TK DATA

3 levels:inter-study, inter-substrate and inter-individual variability

$$\overbrace{\tau_{j}}^{\text{Normal}} Normal(\mu_{ind}, \frac{1}{\tau_{ind}})$$
$$\mu_{j} \sim Normal(\mu_{sub}, \frac{1}{\tau_{sub}})$$

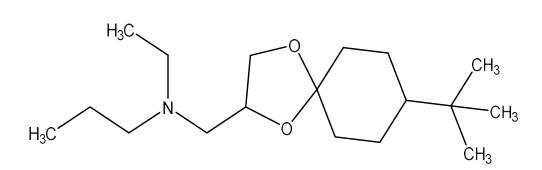
$$\mathbf{N}_{a}$$


$$\mu_{jk} \sim Normal(\mu_j, \frac{1}{\tau_{st}})$$

$$\frac{\log m_{jk}}{\log m_{jk}} \sim Normal(\mu_{jk}, \frac{1}{n_{jk}\tau_{j}})$$

$$\frac{lv_{jk}}{\log m_{jk}} \sim \frac{1}{n_{jk}\tau_{j}}Chi^{2}(n_{jk}-1)$$

COMBINING POLYMORPHISM DATA EXTENSIVE AND POOR METABOLISERS (EMS AND PMS) CYP2D6



Data generation through non-testing approaches Example: Pesticide metabolites

(Q)SAR and read-across for the assessment of toxicologically relevant metabolites in the assessment of dietary risk

A systemic fungicide used to control common fungal diseases on cereals and fruit

STEP 5: (Q)SAR PREDICTION OF GENOTOXICITY

Gene mutation:

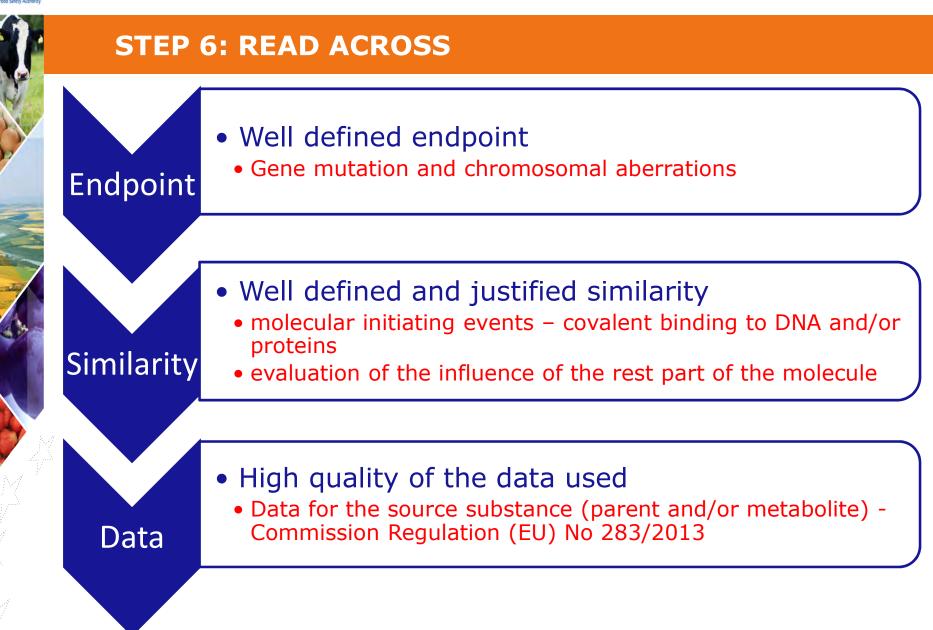
CAESAR Mutagenicity Model (http://www.vega-qsar.eu/) OASIS AMES Mutagenicity model (<u>http://oasis-lmc.org/</u>)

Chromosomal alterations

Toxtree in vivo micronucleus model(http://toxtree.sourceforge.net/) OASIS Chromosomal Aberration model (<u>http://oasis-lmc.org/</u>)

STEP 5: (Q)SAR PREDICTION OF GENOTOXICITY

		CAESAR prediction of gene mutation (Applicability Domain)	OASIS prediction of gene mutation (Applicability Domain)	Rule based model for prediction of in vivo CA (Toxtree) (no Applicability Domain evaluation is available)	OASIS prediction of CA (Applicability Domain)
M01	Desethyl	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M02	Despropyl	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M04	N-formyl-desethyl	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M05	Hydroxyl	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M07	Hydroxy acid	Negative (Out)	Negative (out)	Positive alert for CA	Negative (out)
M08	8-hydroxy acid	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M09	Hydroxy-despropyl	Positive (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M10	Hydroxy-N-oxide	Negative (Out)	Negative (out)	Positive alert for CA	Negative (out)
M11	Desethyl acid	Negative (Out)	Negative (out)	Positive alert for CA	Negative (out)
M12	Despropyl acid	Negative (Out)	Negative (out)	Positive alert for CA	Negative (out)
M13	Cyclohexanol	Negative (In)	Negative (In)	Negative	Negative (out)
M14	Diol	Negative (In)	Negative (In)	Negative	Negative (In)
M15	Ketone	Negative (Could be out)	Negative (In)	Negative	Negative (out)
M16	Hydroxy-ketone	Negative (In)	Negative (In)	Negative	Negative (out)
M25	Sulfate	Negative (Out)	Negative (out)	Positive alert for CA	Negative (out)
M26	Desethyl-sulfate	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M27	Despropyl-sulfate	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M28	Aminodiol	Negative (In)	Negative (In)	Positive alert for CA	Negative (In)
M29	Aminodiol-N-oxide	Negative (Out)	Negative (out)	Positive alert for CA	Negative (out)
M30	Desethyl-aminodiol	Negative (Could be out)	Negative (In)	Positive alert for CA	Negative (out)
M31	Despropyl-aminodiol	Negative (In)	Negative (In)	Positive alert for CA	Negative (out)
M35	Docosanoic acid ester	Negative (Could be out)	Negative (In)	Negative	Negative (out)
M36	Tetracosanoic acid ester	Negative (Could be out)	Negative (In)	Negative	Negative (out)
M37	Cyclohexenol	Negative (In)	Negative (out)	Negative	Positive (In)
M38	N-formyl-despropyl	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M41	Hydroxy-desethyl	Negative (Out)	Negative (out)	Positive alert for CA	Negative (out)



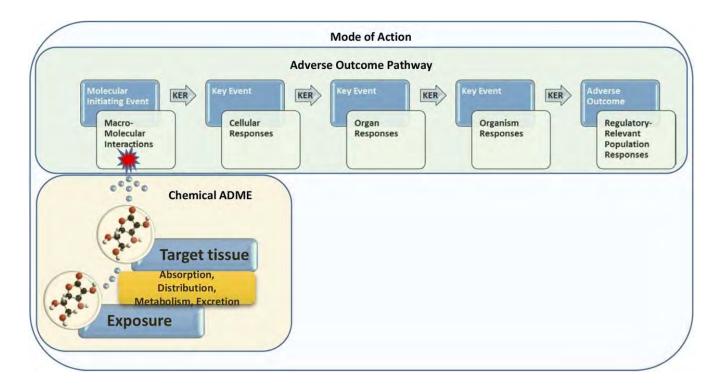
STEP 5: (Q)SAR PREDICTION OF GENOTOXICITY

- 20 metabolites are predicted as positive (potentially genotoxic) from at least one of the models.
- 6 metabolites are predicted as negative from all models.
- All metabolites are moved to the next step read across analysis.

STEP 6: READ ACROSS

OECD Toolbox:
 DNA binding by OASIS
 DNA binding by OECD
 Protein binding by OECD
 DNA alerts for AMES, MN and CA by OASIS
 In vitro mutagenicity (AMES test) alerts by ISS
 In vivo mutagenicity (Micronucleus) alerts by ISS
 Protein binding alerts for Chromosomal aberrations by OASIS

Organic functional groups


(Q)SAR PREDICTION AND READ ACROSS - CONCLUSIONS

- 4 metabolites negative by all (Q)SAR models and no new alerts were identified by read across: no concern for genotoxicity.
- 6 metabolites where genotoxicity concern cannot be excluded (+ve (Q)SAR predictions and/or read across considerations): exposure assessment and comparison against TTC (step 8) and/or testing (step 9)
 - 12 metabolites predicted as potential genotoxicants by (Q)SAR models, BUT as a result of read across: no concern for genotoxicity.

INTELLIGENT USE OF DATA

Adverse Outcome Pathways and Mode of Action Analysis

Edwards et al. JPET (2016)

OUTLINE

Data for chemical RA: what do we need? Data: new types, new sources, new approaches

3.Evidence, significance and uncertainties

GUIDANCE ON UNCERTAINTY IN RISK ASSESSMENT

SCIENTIFIC OPINION

ADOPTED: dd mmmm yyyy doi:10.2903/j.efsa.20YY.NNNN PUBLISHED: dd mmmm yyyy

AMENDED: dd mmmm yyyy

EFSA Journal

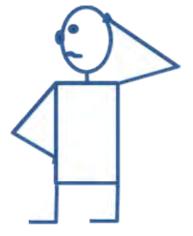
Revised Draft for Internal Testing

Guidance on Uncertainty in EFSA Scientific Assessment EFSA Scientific Committee^{1, 2}

European Food Safety Authority (EFSA), Parma, Italy

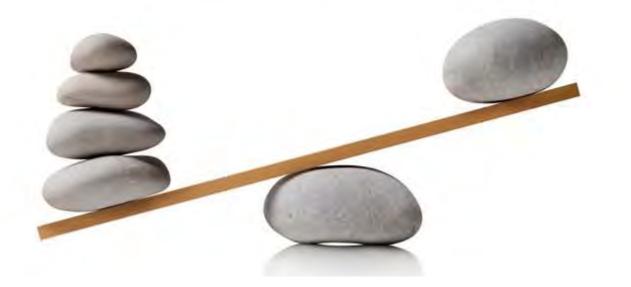
GUIDANCE ON UNCERTAINTY IN RISK ASSESSMENT

- To provide guidance on how to characterise, document and explain all types of uncertainty arising in EFSA's scientific assessments.
- Public consultation on draft guidance
- Updated draft guidance published for trial phase (including external volunteers)
- Panel and Risk Manager training + Testing phase: Mar 2016 May 2017
- Integrate lessons learnt
- Expected adoption: End 2017


(work started in Sept 2012)

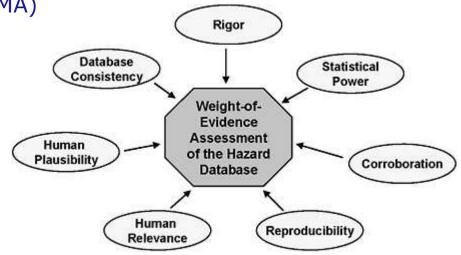
"Uncertainty is unmeasurable risk"

"Risk is


measurable

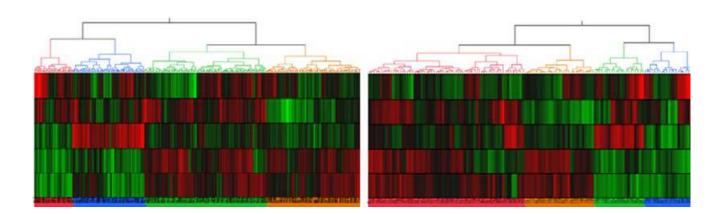
uncertainty"

The Weight of Evidence

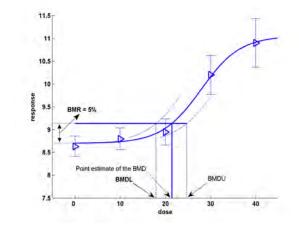


Weight of evidence is a measure of evidence on one side of an issue as compared with the evidence on the other side of the issue, or to measure the evidence on multiple issues.

GUIDANCE ON THE WEIGHT OF EVIDENCE APPROACH


- To provide guidance on the use of the WoE in scientific risk assessment using qualitative and quantitative approaches
- Case studies for various areas under EFSA's remit to be annexed
- Timelines: public consultation in 2016, adoption Sept 2017
- In addition to Panel representation and specific experts in the WG:
 - Sister Agencies (ECHA, EMA)
 - Hearing expert (NTP, US)

BIOLOGICAL RELEVANCE


- ToR: to provide generic issues and criteria to consider when deciding whether an observed effect is of biological relevance for the assessment
 - Definitions and concepts, such as adverse, adaptive, harm, homeostasis, biological threshold, etc.
- All EFSA areas of activity to be considered
- Public consultation in 1st quarter 2017
- Adoption: mid-2017

UPDATE of the Guidance on Benchmark dose approach

Ongoing revision of BMD 2009 guidance, after 6 years of implementation

GUIDANCE I	DOCUMENT		ef sa Jour
ADOPTED: loi:10.2903/j.efsa.20	PUBLISHED: dd mmmm yyyy YY NNNN	AMENDED: <mark>dd mmmm yyyy</mark>	
Ise of the	benchmark dose a	unnroach in risk	assessmen

Public consultation: Summer 2016

Adoption: November 2016

Substances in Food for Infants below 16 Weeks of Age

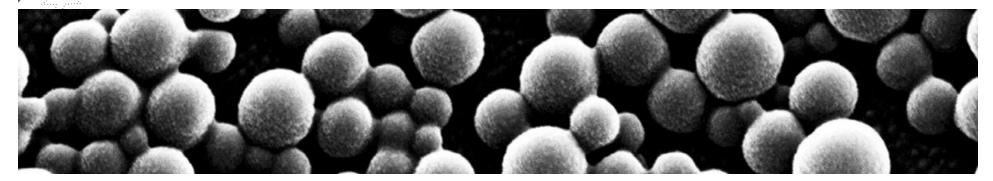
- **Background:** Mandate from EC for a guidance on food additives, contaminants, pesticide residues and food contact materials in food destined for infants <16 weeks.
- Population where health-based guidance values (ADI, TDI, ARfD) do not apply.
- Considered a very sensitive population due to immaturity of organs.

Timeframe

- Public consultation: End 2016
- Adoption: April 2017

EFSA WORK ON BOTANICALS - NEXT CHALLENGES

- Clarify what should be an appropriate composition characterisation of a botanical preparation
- Botanical preparations = complex chemical mixtures
- Compendium of Botanicals version N° 3 Timeframe:
 - intermediate draft published July 2016
 - Final report: mid 2018



NANOMATERIALS

Future developments are expected

- Nano-encapsulates and nano-composites in applications such as novel foods, food/feed additives, biocides, food contact materials, but especially as pesticides
- Need to update the 2011 SC Nanomaterial Guidance to stay aligned with
 - Scientific innovations
 - □ Legal requirements
- To take into account the general extensions needed to cover also nanopesticides and nanoformulations, food contact materials, food and feed additives and novel foods
- Update of the physico-chemical property measurements and the other data needed for food/feed assessment.
- A second guidance document to be produced on the environmental risk assessment for nanoparticles used in the food chain

RISK ASSESSMENT OF CHEMICAL MIXTURES

Complex problem due to

- > Type of mixture (intentional, coincidental)
- Exposure (combined, single or multiple routes)
- > Whole mixture approach versus component-based approach?
- > Quantitative assessment versus qualitative assessment
- Scientific event held in 2015
- Development of guidance on the harmonisation of human risk assessment and environmental risk assessment to combined exposure to multiple chemicals.

SCIENTIFIC COLLOQUIUM SERIES	efsa
APPROVED: 25 March 2015	PUBLISHED: 31 March 2015
Summary Rep	ort
EFSA Scientific Collo	quium 21
Harmonisation of hur	
ecological risk assess combined exposure to mult	
11-12 September	r 2014
Edinburgh, U	к
European Food Safety	Authority

THANK YOU

ANY QUESTIONS?