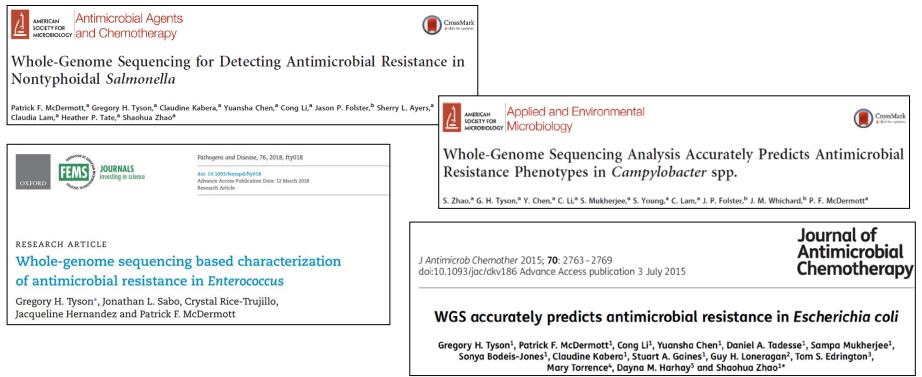
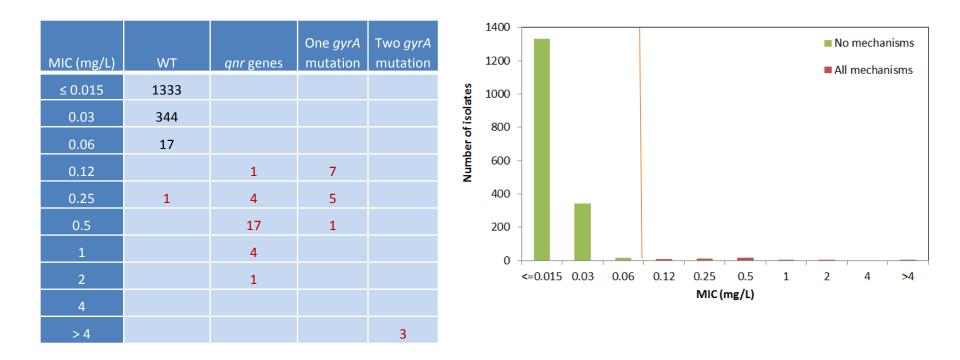


Antimicrobial Resistance Surveillance Using Genomics


Patrick McDermott MS, PhD, D(AAM) US Food and Drug Administration Center for Veterinary Medicine Laurel, MD

Predicting Resistance: From Genotype to Phenotype

NARMS Genotype-Phenotype Correlations



Predicting Resistance from WGS

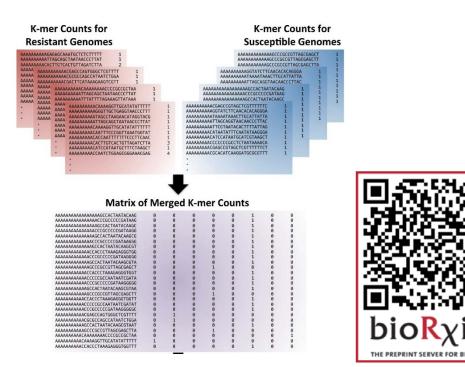
Bacterium	Gen/Phe correlation	Reference					
Salmonella enterica	99.70%	Zankari et al., 2013, J Antimicrob Chemother					
Saimonella enterica	99.00%	McDermott et al., 2016, Antimicrob Agents Chemother					
Facherichia coli	97.10%	Stoesser et al., 2013, J Antimicrob Chemother					
Escherichia coli	98.50%	Tyson et al 2015., J Antimicrob Chemother					
Campylobacter spp.	99.20%	Zhao et al 2015., J Antimicrob Chemother					
Staphylococcus aureus	98.80%	Gordon et al 2014., J Antimicrob Chemother					
Pneumococcus	98.00%	Metcalf et al 2016, Clin Microbiol Infect					
Enterobacteriaceae (B-lacs)	100.00%	Shelburne et al, 2017 Clin Infect Dis					
Mycobacterium	95.30%	Phelan et al 2016. Genome Med					
	92.30%	Walker et al 2015. Lancet Infect Dis					

Ciprofloxacin MICs by Mechanism and GCVs

Tyson GH, Zhao S, Li C, Ayers S, Sabo JL, Lam C, Miller RA, McDermott PF. *Establishing genotypic cutoff values to measure antimicrobial resistance in* Salmonella. Antimicrob Agents Chemother. 2017 Feb 23;61(3).

Summary of GCVs

Antimicrobials	CLSI susceptible (S): treatment success likely	EUCAST ECV: wild-type (WT)	GCV: no resistance mechanism (NRM)
Ampicillin	≤ 8	≤ 4	≤ 8
Amoxicillin-clavulanate	≤ 8	None	≤ 2
Cefoxitin	≤ 8	≤ 8	≤ 8
Ceftriaxone	≤ 1	None	≤ 1
Ceftiofur	≤ 2	≤ 2	≤ 2
Gentamicin	≤ 4	≤ 1	≤ 2
Tetracycline	≤ 4	≤ 4	≤ 4
Chloramphenicol	≤ 8	≤ 16	≤ 16
Ciprofloxacin	≤ 0.06	≤ 0.06	≤ 0.06
Nalidixic acid	≤ 16	≤ 16	≤ 8
Azithromycin	None	None	≤ 16
Sulfisoxazole	≤ 256	None	≤ 256
Trimethoprim-sulfamethoxazole	≤ 2	≤ 1	≤ 0.05

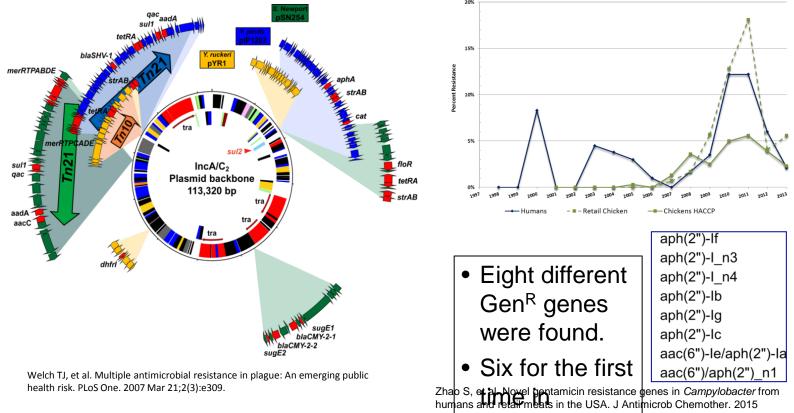

Tyson GH, Zhao S, Li C, Ayers S, Sabo JL, Lam C, Miller RA, McDermott PF. *Establishing Genotypic Cutoff* Values To Measure Antimicrobial Resistance in Salmonella. Antimicrob Agents Chemother. 2017 Feb 23;61(3).

Using machine learning to predict antimicrobial minimum inhibitory concentrations and associated genomic features for nontyphoidal Salmonella

Marcus Nguyen, S. Wesley Long, Patrick F McDermott, Randall J Olsen, Robert Olson, Rick L Stevens, Gregory H Tyson, Shaohua Zhao, James J Davis

- Used 5,278 NARMS isolates with phenotype/genotype data
- Susceptibility to 16 antibiotics
- Find non redundant k-mers
- Merge R and S to form a matrix
- Generated XGBoost-based machine learning models to predict MIC ± 1 two-fold dilution

Using machine learning to predict antimicrobial minimum inhibitory concentrations and associated genomic features for nontyphoidal Salmonella



Marcus Nguyen, S. Wesley Long, Patrick F McDermott, Randall J Olsen, Robert Olson, Rick L Stevens, Gregory H Tyson, Shaohua Zhao, James J Davis

- The MIC prediction models have average accuracies between 95-96% within ± 1 two-fold dilution factor.
- The models are capable of predicting susceptible and resistant MICs with no *a priori* information about the underlying gene content of the genomes.
- By using diverse genomes for training sets, MIC prediction models with accuracies >90% can be generated with fewer than 500 genomes.
- Despite annual fluctuations in AMR gene content in the sampled genomes, this approach for predicting MICs is stable year after year.
- Evaluating loci for including in R-gene screening

	Accuracy	95% CI	Samples
Ampicillin	0.97	[0.96-0.97]	4501
Amoxy-Clav	0.97	[0.97-0.98]	4502
Ceftriaxone	0.97	[0.97-0.98]	4502
Azithromycin	0.99	[0.99-1.00]	1641
Chloramphenicol	0.99	[0.99-0.99]	4502
Ciprofloxacin	0.98	[0.98-0.99]	4502
Trimethoprim-Sulfa	0.99	[0.99-0.99]	4501
Sulfisoxazole	0.96	[0.95-0.97]	4154
Cefoxitin	0.96	[0.95-0.97]	4502
Gentamicin	0.93	[0.92-0.94]	4502
Kanamycin	0.98	[0.97-0.99]	924
Nalidixic Acid	0.98	[0.97-0.98]	4502
Streptomycin	0.91	[0.91-0.92]	4502
Tetracycline	0.98	[0.98-0.98]	4502
Ceftiofur	0.99	[0.99-0.99]	4502
Total	0.97	[0.97-0.97]	60741

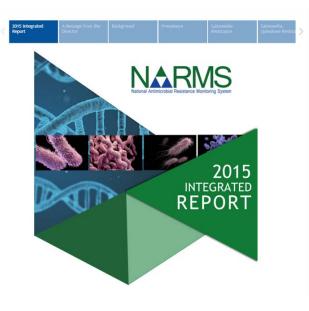
WGS gives new answers to old questions

May;70(5) Campylobacte

Plasmid-mediated colistin resistance

- Colistin is used as a last-resort drug to treat patients with multidrug-resistant infections, including CRE
- The *mcr-1* (mobile colistin resistance) gene was the first plasmid-mediated resistance mechanisms discovered. First reported in China, November 2015
- Without opening a freezer door, we screened over 155,000 bacterial genomes, about 7,000 from NARMS, and none contained the gene
- By selective culture enrichment, our partners at USDA found *mcr-1* in *E. coli* isolates collected from the intestines of two pigs (out of 2,000 samples tested)
- Metagenomic analysis of blinded samples also detected the *mcr-1* gene.

Emergence of plasmid-mediated colist in resist ance mechanism MOR-1 in animals and human beings in China: a microbiological and molecular biological study ℈ⅆℹ℗


M-fun Lin®, Yang Wang®, Timothy RWalsh, Ling-Man M, Rong Zhang, James Spencer, Yohei Doi, Guobuo Tian, Biclei Dong, Manhui Huang, Lin-Feng Yu, Danxia Gu, Hongwei Ren, Xaojie Chen, Induao Ly, Dundan He, Hongwei Zhou, Zisen Liang, Jan-Hua Liu, Janzhong Shen

Bacteria that resist last-resort antibiotics were found in China two months ago, now they're

Integrated reporting of genomics: transforming bewildering complexity to intelligible order

Google-> NARMS Integrated Report

NARMS Now: Integrated Data Resistance by Species and Serotype Compare antimicrobial resistance in bacteria from animals and humans. You have the option to choose from four different organisms, 14 animal and meat sources, and several antimicrobials. Resistance by Sample Source and Place Compare resistance to a single antimicrobial agent in bacteria from multiple sources and see the geographic distribution of the resistant bacteria. Resistance Genes in Salmonella Explore the distribution of resistance genes from Salmonella, and see distinct and common resistance genes in bacteria from different sample types. Resistance to Multiple Antimicrobial Agents Compare any combination of multiple antimicrobial agents for resistance over time, and compare by source. Multidtrug Resistance Compare multidrug resistance trends for Salmonella and Campylobacter. Additionally, compare resistance in E. coli and Enterococcus from retail meat and food animals over time. References For those interested in other NARMS resources, including the isolate level data, go to the reference page.

Adaptations of Food Safety Importance

- (1) Thermal tolerance
- (2) Dessication resistance
- (3) Osmotic/Ionic tolerance
- (4) Quat resistance
- (5) Chlorine resistance
- (6) Biofilm persistence
- (7) Surface adherence
- (8) Antibiotic resistance
- (9) Antimicrobial resistance
- (10) Ecological fitness
- (11) Heavy metal resistance
- (12) Metabolic persistence
- (13) Enhanced hydrophobic fitness
- (14) Produce invasiveness
- (15) Flower invasiveness
- (16) Root system invasiveness
- (17) Acid resistance

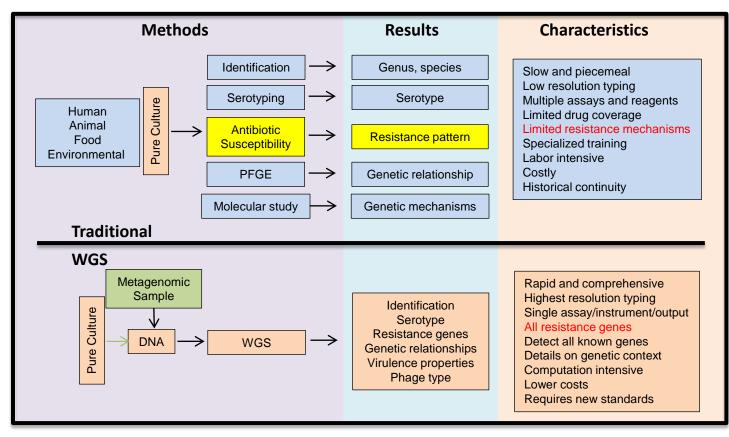
- (18) Surface water fitness
- (19) In vivo plant migratory fitness
- (20) Soil fitness
- (21) Capsaicin resistance
- (22) Swarming
- (23) Trans-ovarian poultry colonization
- (24) Fecal persistence (poultry)
- (25) Yolk content invasion
- (26) Multidrug resistance
- (27) External amoeba harborage
- (28) Internal amoeba harborage
- (29) Acyl-homoserine lactone (AHL)
- (30) KatE stationary-phase catalase
- (31) In vivo migratory fitness
- (32) RDAR phenotype
- (33) The 'Weltevreden' type
- (34) Peristence within the tomato**

Representative genes from the literature that may be linked to resistance, which may affect preventative controls.

ltrC	LMM7_2442	cold stress	Chaturongakul et al., 2008
pdhB	LMM7_1083	oxidative stress	Chaturongakul et al., 2008
rsbV	lmo0893	regulator of sigB activity	Chaturongakul et al., 2008
rsbW	lmo0894	regulator of sigB activity	Chaturongakul et al., 2008
rsbX	BN389_09250	regulator of sigB activity	Chaturongakul et al., 2008
gadC	lmo2362	acid stress	Chaturongakul et al., 2008; Begley and Hill 2015
gadA	lmo0447	acid stress	Chaturongakul et al., 2008;Begley and Hill 2015
opuCA	LMRG_00880	osmotic stress	Fraser et al., 2003
opuCB	LMRG_00879	osmotic stress	Fraser et al., 2003
opuCC	LMRG_00878	osmotic stress	Fraser et al., 2003
opuCD	LMRG_00877	osmotic stress	Fraser et al., 2003
arcA	lmo0043	acid stress	Gahan and Hill, 2014
arcB	LMHCC_0975	acid stress	Gahan and Hill, 2014
arcC	BN389_00490	acid stress	Gahan and Hill, 2014
argB	lmo1589	acid stress	Gahan and Hill, 2014
argC	lmo1591	acid stress	Gahan and Hill, 2014
argD	lmo1588	acid stress	Gahan and Hill, 2014
argG	lmo2090	acid stress	Gahan and Hill, 2014
argH	lmo2091	acid stress	Gahan and Hill, 2014
argR	lmo1637	acid stress	Gahan and Hill, 2014
uspA	lmo0515	general stress response	Gomez et al., 2011
rpoN	LMM7_2503	osmotic stress;cold stress	Okada et al., 2006
sigL	BN389_24240	cold stress	Raimann et al., 2009
betL	LMM7_2191	osmotic stress;cold stress	Tasara and Stephan 2006

Mine the literature, mine the WGS databases. Match Genotype with Phenotype

Making Data Accessible: NARMS Now


•

- <u>Human Clinical Cases</u> Click the link to be taken to CDC's NARMS Now: Human Data where you can download the human data.
- <u>Retail Meats</u> Last updated 10/20/2017
- Food Producing Animals
 - <u>HACCP 1997-2005</u> Last updated
 8/21/2015
 - <u>HACCP 2006-2015</u> Last updated 10/20/2017
 - <u>Cecal 2013-2015</u> Last updated 10/20/2017
 - Data Dictionary

- Nearly 200,000 entries of isolate-level data for *Salmonella, Campylobacter, E. coli* and *Enterococcus* collected since 1996.
- Salmonella from 14 human, food and animals sources
- Extensive metadata including MICs to 16 antibiotics
- WGS data on all food *Salmonella* since 2002
- WGS data on human and animal *Salmonella* since 2014
- 2018-2019 goal is towards publication of real time WGS data to public domain

One Health, One Method

Antimicrobial Resistance Surveillance One Health - One Method

- Highest practical resolution of structural traits in microbial members of an ecosystem
- Accurate prediction of clinical resistance, and perhaps MIC.
- Resistance to compounds not tested such as disinfectants and heavy metals, and other potential drivers of resistance
- Deep surveillance into previously hidden associations (*e.g.*, co-resistance with plasmid type, virulence) including determinants of zoonotic transmissibility of resistance
- Source attribution for more precise intervention
- Retrospective resistance surveillance
- Metagenomics to escape limitations of classical microbiology
- Look farther with few resources: domestic and wild animal populations, animal feed, environmental transmission & exposure pathways.
- Global resistance emergence and spread
- Greater confidence in public health decision making

Acknowledgements

Sampa Mukherjee

USDA-FSIS Udav Dessai Emilio Esteban David Goldman Wanda Wilson FSIS Field Lab Staff, Labs and HQ Teams

USDA-ARS Kimberly Cook Jonathan Frye **Rick Meinersman Eileen Thacker** Jodie Plumblee

USDA-APHIS Dave Dargatz Bruce Wagner Kathe Bjork

NIH-NCBI **Bill Klimke** Mike Feldgarden

FDA-CVM-DAFM

Jason Abbott Sherry Avers Sonya Bodeis **Emily Crarey** Maureen Davidson Stuart Gaines Beilei Ge Jacqueline Hernandez Heather Tate Chih-Hao Hsu Claudine Kabera Claudia Lam Cong Li Gordon Martin Shawn McDermott

Epiphanie Nyirabahizi **Crystal Rice-Trujillo** Jonathan Sabo Saul Sarria Daniel Tadesse Thu-Thuy Tran **Gregory Tyson Caitlin Welsh** Qianru Yang Shenia Young Shaohua Zhao

FDA-CVM

Bill Flynn Heather Harbottle Jeff Gilbert

Ron Miller Meg Oehler Sanchez Saint-Fleurant

Neal Bataller Susan Bright **Ruby Singh**

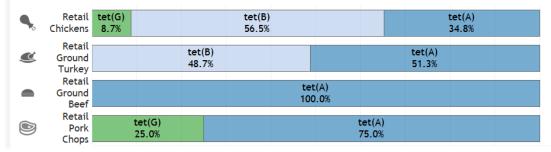
Cindy Burnsteel Shannon Rutherford

CDC-DFWED

Cindy Friedman Jean Whichard Beth Karp **Jason Folster** Hayat Caidi Jared Reynolds Ian Plumb Dawn Sievert

FDA/CFSAN

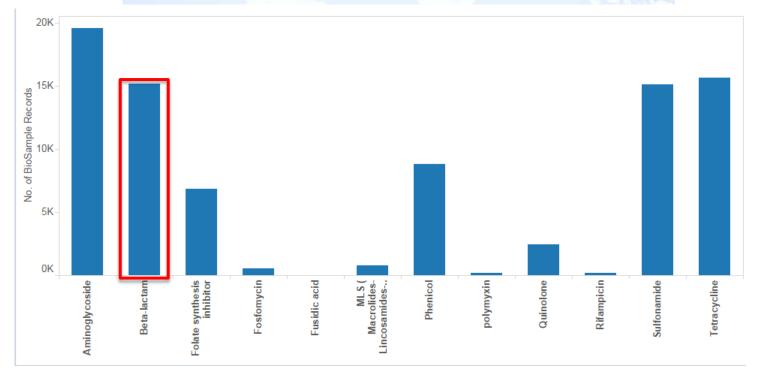
Mark Allard Eric Brown **Errol Strain Ruth Timme**

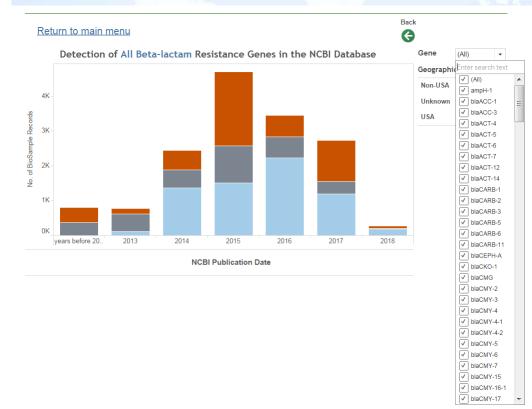

Non-federal partners

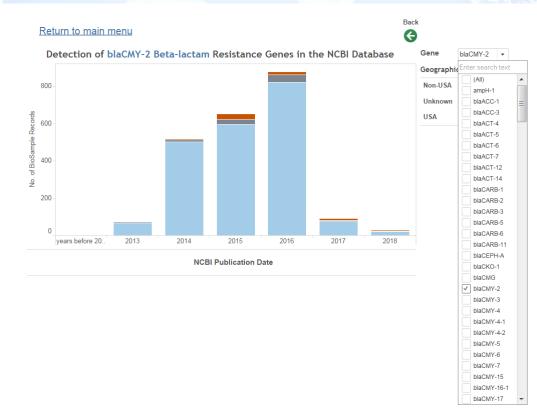
- Public health • laboratories in all 50 states
- Universities
- **Research collaborators**

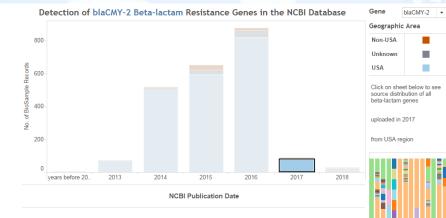
Changes in resistance genes by year Back to Table of Co... To begin, select an **antimicrobial**. To view a specific retail meat source, use the **source** filter. Move the cursor from left to right to view the changes in distribution of the resistance genes. Please note: Not all resistant isolates were sequenced and of those sequenced, some did not carry genes known to confer resistant to a certain antimicrobial or classes of antimicrobials. As a result, the resistance information does not ... Select an Antimi.. Source Retail Chickens Retail Ground Turkey Retail Ground Beef Retail Pork Chops (All) - \star Tetracycline • Tetracycline resistance in *Salmonella* from retail meat Percent Resistance 80.0% 60.0% 40.0% 20.0% 0.0% 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Distribution of resistance genes in 2003 (click on a gene for more information)


https://www.fda.gov/AnimalVeterinary/SafetyHealth/Antimicrobi alResistance/NationalAntimicrobialResistanceMonitoringSyste m/ucm570694.htm

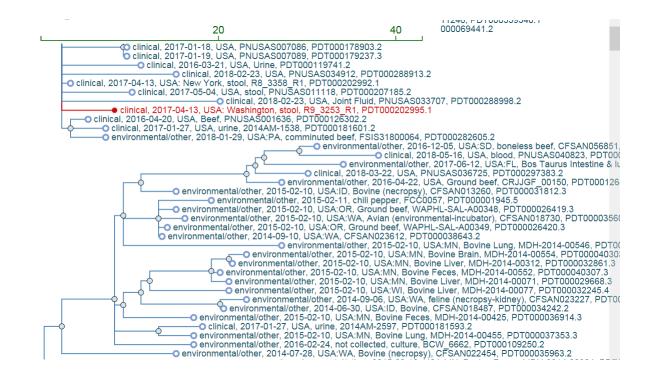


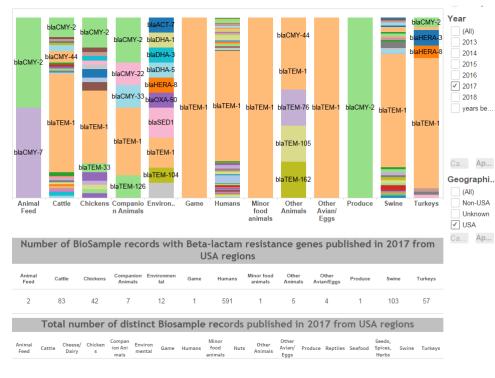

Select an icon or alert below to get started.



https://www.fda.gov/AnimalVeterinary/SafetyHealth/Antimicrobi alResistance/NationalAntimicrobialResistanceMonitoringSyste m/ucm570694.htm

Bio Sample	Class	Gene	Geographic Location	Sources	Serovar	Year of NCBI Release = Date	Click Buttons for Links to NCBI					
SAMN04394748	Beta-lactam	blaCM	USA: Wash	stool/fecal	Newport	2017	Click Here					
SAMN04394757	Beta-lactam	blaCM	USA: New	stool/fecal	Dublin	2017	Click Here					
SAMN04394778	Beta-lactam	blaCM	USA: New	fecal sample	Dublin	2017	Click Here	Ξ				
SAMN04394792	Beta-lactam	blaCM	USA: Wash	stool	Newport	2017	Click Here					
SAMN04394801	Beta-lactam	blaCM	USA: Wash	stool/fecal	Typhimurium	2017	Click Here		0	S		
SAMN04394809	Beta-lactam	blaCM	USA: New	stool/fecal	Newport	2017	Click Here		Cattle	nimals	Game	animals
SAMN04394812	Beta-lactam	blaCM	USA: New	stool/fecal	Newport	2017	Click Here		0	< `	9	anii
SAMN04394835	Beta-lactam	blaCM	USA: Wash	stool	Dublin	2017	Click Here			Companion		Minor food
SAMN04394836	Beta-lactam	blaCM	USA: Wash	stool/tecal	Null	2017	Click Here			par		orfe
SAMN04394840	Beta-lactam	blaCM	USA: Wash	stool/fecal	Null	2017	Click Here			LO.		Min
SAMN04394862	Beta-lactam	blaCM	USA: Wash	stool/fecal	Dublin	2017	Click Here			0		_
SAMN04394899	Beta-lactam	blaCM	USA: New	stool/fecal	Newport	2017	Click Here					
SAMN04394906	Beta-lactam	blaCM	USA: Wash	stool	Newport	2017	Click Here					
SAMN04394920	Beta-lactam	blaCM	USA: Wash	stool/fecal	Dublin	2017	Click Horo	*				


Produc Turkey


Other

Biosamples may have more than one entry if there is more than one SRA number per Biosample.

Home / Isolates Browser / Collapsed Tree View | Whole Tree View

