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NARMS Genotype-Phenotype Correlations 
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Predicting Resistance from WGS 

Bacterium
Gen/Phe 

correlation
Reference

99.70% Zankari et al., 2013, J Antimicrob Chemother

99.00% McDermott et al., 2016, Antimicrob Agents Chemother

97.10% Stoesser et al., 2013, J Antimicrob Chemother

98.50% Tyson et al 2015., J Antimicrob Chemother

Campylobacter spp. 99.20% Zhao et al 2015., J Antimicrob Chemother

Staphylococcus aureus 98.80% Gordon et al 2014., J Antimicrob Chemother 

Pneumococcus 98.00% Metcalf et al 2016, Clin Microbiol Infect

Enterobacteriaceae (B-lacs) 100.00% Shelburne et al, 2017 Clin Infect Dis

95.30% Phelan et al 2016. Genome Med

92.30% Walker et al 2015. Lancet Infect Dis

Salmonella enterica 

Escherichia coli

Mycobacterium
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Ciprofloxacin MICs by Mechanism and GCVs 

MIC (mg/L) WT qnr genes 
One gyrA 
mutation 

Two gyrA 
mutation 

≤ 0.015 1333       

0.03 344       

0.06 17       

0.12 1 7   

0.25 1 4 5   

0.5   17 1   

1   4     

2   1     

4         

> 4       3 

Tyson GH, Zhao S, Li C, Ayers S, Sabo JL, Lam C, Miller RA, McDermott PF. Establishing genotypic cutoff values to measure 
antimicrobial resistance in Salmonella. Antimicrob Agents Chemother. 2017 Feb 23;61(3).  
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Summary of GCVs 
Antimicrobials CLSI susceptible (S): 

treatment success 
likely  

EUCAST ECV: 
wild-type (WT) 

GCV: no resistance 
mechanism (NRM) 

Ampicillin ≤ 8 ≤ 4 ≤ 8 
Amoxicillin-clavulanate ≤ 8 None ≤ 2 
Cefoxitin ≤ 8 ≤ 8 ≤ 8 
Ceftriaxone ≤ 1 None ≤ 1 
Ceftiofur ≤ 2 ≤ 2 ≤ 2 
Gentamicin ≤ 4 ≤ 1 ≤ 2 
Tetracycline ≤ 4 ≤ 4 ≤ 4 
Chloramphenicol ≤ 8 ≤ 16 ≤ 16 
Ciprofloxacin ≤ 0.06 ≤ 0.06 ≤ 0.06 
Nalidixic acid ≤ 16 ≤ 16 ≤ 8 
Azithromycin None None ≤ 16 
Sulfisoxazole ≤ 256 None ≤ 256 
Trimethoprim-sulfamethoxazole ≤ 2 ≤ 1 ≤ 0.05 

 
 

 

Tyson GH, Zhao S, Li C, Ayers S, Sabo JL, Lam C, Miller RA, McDermott PF. Establishing Genotypic Cutoff 
Values To Measure Antimicrobial Resistance in Salmonella. Antimicrob Agents Chemother. 2017 Feb 23;61(3).  
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• Used 5,278 NARMS isolates with 
phenotype/genotype data 

• Susceptibility to 16 antibiotics 
• Find non redundant k-mers 
• Merge R and S to form a matrix 
• Generated XGBoost-based 

machine learning models to 
predict MIC ± 1 two-fold dilution 
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• The MIC prediction models have average 
accuracies between 95-96% within ± 1 two-fold 
dilution factor. 

• The models are capable of predicting 
susceptible and resistant MICs with no a priori 
information about the underlying gene content 
of the genomes.  

• By using diverse genomes for training sets, MIC 
prediction models with accuracies >90% can be 
generated with fewer than 500 genomes. 

• Despite annual fluctuations in AMR gene 
content in the sampled genomes, this approach 
for predicting MICs is stable year after year.  

• Evaluating loci for including in R-gene screening 
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Welch TJ, et al. Multiple antimicrobial resistance in plague: An emerging public 
health risk. PLoS One. 2007 Mar 21;2(3):e309.  

• Eight different 
GenR genes 
were found. 

• Six for the first 
time in 
Campylobacte
   

Zhao S, et al. Novel gentamicin resistance genes in Campylobacter from 
humans and retail meats in the USA. J Antimicrob Chemother. 2015 
May;70(5):1314-21. 

WGS gives new answers to old questions 
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Plasmid-mediated colistin resistance 
• Colistin is used as a last-resort drug to treat 

patients with multidrug-resistant infections, 
including CRE 
 

• The mcr-1 (mobile colistin resistance) gene was the 
first plasmid-mediated resistance mechanisms 
discovered. First reported in China, November 2015 
 

• Without opening a freezer door, we screened over 
155,000 bacterial genomes, about 7,000 from 
NARMS, and none contained the gene 
 

• By selective culture enrichment, our partners at 
USDA found mcr-1 in E. coli isolates collected from 
the intestines of two pigs (out of 2,000 samples 
tested) 
 

• Metagenomic analysis of blinded samples also 
detected the mcr-1 gene. 

Bacteria that resist last-resort 
antibiotics were found in China two 
months ago, now they're 
everywhere 
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Integrated reporting of genomics: transforming  
bewildering complexity to intelligible order 

Google-> NARMS Integrated 
Report 
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Adaptations of Food Safety Importance 
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Making Data Accessible: NARMS Now 
• Human Clinical Cases – Click the link to be 

taken to CDC’s NARMS Now: Human Data 
where you can download the human data. 

• Retail Meats – Last updated 10/20/2017 
• Food Producing Animals  

– HACCP 1997-2005 – Last updated 
8/21/2015 

– HACCP 2006-2015 – Last updated 
10/20/2017 

– Cecal 2013-2015 – Last updated 
10/20/2017 

– Data Dictionary 
 

• Nearly 200,000 entries of isolate-level data for 
Salmonella, Campylobacter, E. coli and Enterococcus 
collected since 1996. 

• Salmonella from 14 human, food and animals sources 
• Extensive metadata including MICs to 16 antibiotics 
• WGS data on all food Salmonella since 2002 
• WGS data on human and animal Salmonella since 

2014 
• 2018-2019 goal is towards publication of real time 

WGS data to public domain 
 
 
 

https://wwwn.cdc.gov/narmsnow/
https://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/UCM458659.xlsx
https://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/UCM458661.xlsx
https://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/UCM458663.xlsx
https://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/UCM458664.xlsx
https://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/UCM592840.xlsx
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Antimicrobial Resistance Surveillance 
One Health - One Method 

• Highest practical resolution of structural traits in microbial members of an ecosystem 
• Accurate prediction of clinical resistance, and perhaps MIC. 
• Resistance to compounds not tested such as disinfectants and heavy metals, and 

other potential drivers of resistance 
• Deep surveillance into previously hidden associations (e.g., co-resistance with 

plasmid type, virulence) including determinants of zoonotic transmissibility of 
resistance  

• Source attribution for more precise intervention 
• Retrospective resistance surveillance 
• Metagenomics to escape limitations of classical microbiology 
• Look farther with few resources: domestic and wild animal populations, animal feed, 

environmental transmission & exposure pathways.  
• Global resistance emergence and spread 
• Greater confidence in public health decision making 
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https://www.fda.gov/AnimalVeterinary/SafetyHealth/Antimicrobi
alResistance/NationalAntimicrobialResistanceMonitoringSyste
m/ucm570694.htm 
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